nanotechnology

Control system

A control system is a device or set of devices to manage, command, direct or regulate the behavior of other devices or systems.

There are two common classes of control systems, with many variations and combinations: logic or sequential controls, and feedback or linear controls. There is also fuzzy logic, which attempts to combine some of the design simplicity of logic with the utility of linear control. Some devices or systems are inherently not controllable.

Modern day control engineering (also called control systems engineering) is a relatively new field of study that gained a significant attention during twentieth century with the advancement in technology. It can be broadly defined as practical application of control theory. Control engineering has an essential role in a wide range of control systems from a simple household washing machine to a complex high performance F-16 fighter aircraft. It allows one to understand a physical system in terms of its inputs, outputs and various components with different behaviors using mathematical modeling, control it in a desired manner with the controllers designed using control systems design tools, and implement the controller on the physical system employing available technology. A system can be mechanical, electrical, fluid, chemical, financial and even biological, and the mathematical modeling, analysis and controller design shall be done using control theory in one or many of the time, frequency and complex-s domains depending on the nature of the control system design problem.

intimate knowledge of the physical system being controlled is often desired.

Electrical circuits, digital signal processors and microcontrollers can all be used to implement Control systems. Control engineering has a wide range of applications from the flight and propulsion systems of commercial airliners to the cruise control present in many modern automobiles.

In most of the cases, control engineers utilize feedback when designing control systems. This is often accomplished using a PID controller system. For example, in an automobile with cruise control the vehicle's speed is continuously monitored and fed back to the system which adjusts the motor's torque accordingly. Where there is regular feedback, control theory can be used to determine how the system responds to such feedback. In practically all such systems stability is important and control theory can help ensure stability is achieved.

Although feedback is an important aspect of control engineering, control engineers may also work on the control of systems without feedback. This is known as open loop control. A classic example of open loop control is a washing machine that runs through a pre-determined cycle without the use of sensors.

No comments:

Post a Comment

Related Posts Plugin for WordPress, Blogger...

Visitors


free counter
Advertise my site free UseAds.com! Add & submit url & exchange text links + increase traffic & improve page rank!

Advertising my web site free online UseAds.com - Add & submit url & exchange text links + increase traffic & promotion marketing website